Low molecular weight cyclin E overexpression shortens mitosis, leading to chromosome missegregation and centrosome amplification.
نویسندگان
چکیده
Overexpression of the low molecular weight isoforms (LMW-E) of cyclin E induces chromosome instability; however, the degree to which these tumor-specific forms cause genomic instability differs from that of full-length cyclin E (EL), and the underlying mechanism(s) has yet to be elucidated. Here, we show that EL and LMW-E overexpression impairs the G(2)-M transition differently and leads to different degrees of chromosome instability in a breast cancer model system. First, the most significant difference is that EL overexpression prolongs cell cycle arrest in prometaphase, whereas LMW-E overexpression reduces the length of mitosis and accelerates mitotic exit. Second, LMW-E-overexpressing cells are binucleated or multinucleated with amplified centrosomes, whereas EL-overexpressing cells have the normal complement of centrosomes. Third, LMW-E overexpression causes mitotic defects, chromosome missegregation during metaphase, and anaphase bridges during anaphase, most of which are not detected on EL induction. LMW-E induces additional mitotic defects in cooperation with p53 loss in both normal and tumor cells. Fourth, LMW-E-overexpressing cells fail to arrest in the presence of nocodazole. Collectively, the mitotic defects mediated by LMW-E induction led to failed cytokinesis and polyploidy, suggesting that LMW-E expression primes cells to accrue chromosomal instability by shortening the length of mitosis. Lastly, LMW-E expression in human breast cancer tissues correlates with centrosome amplification and higher nuclear grade. These results suggest that LMW-E overexpression leads to higher centrosome numbers in breast cancer, which is a prerequisite for genomic instability.
منابع مشابه
Cyclin E deregulation impairs mitotic progression through premature activation of Cdc25C.
The cyclin E-cyclin-dependent kinase 2 (CDK2) complex accelerates entry into the S phase of the cell cycle and promotes polyploidy, which may contribute to genomic instability in cancer cells. The effect of low molecular weight isoforms of cyclin E (LMW-E) overexpression on mitotic progression and its link to genomic instability were the focus of this study. Here, we show that full-length cycli...
متن کاملInduction of centrosome amplification and chromosome instability in human bladder cancer cells by p53 mutation and cyclin E overexpression.
Centrosome amplification frequently occurs in human cancers and is a major cause of chromosome instability (CIN). In mouse cells, centrosome amplification can be readily induced by loss or mutational inactivation of p53. In human cells, however, silencing of endogenous p53 alone does not induce centrosome amplification or CIN, although high degrees of correlation between p53 mutation and CIN/ce...
متن کاملPin1 regulates centrosome duplication, and its overexpression induces centrosome amplification, chromosome instability, and oncogenesis.
Phosphorylation on Ser/Thr-Pro motifs is a major mechanism regulating many events involved in cell proliferation and transformation, including centrosome duplication, whose defects have been implicated in oncogenesis. Certain phosphorylated Ser/Thr-Pro motifs can exist in two distinct conformations whose conversion in certain proteins is catalyzed specifically by the prolyl isomerase Pin1. Pin1...
متن کاملE2F activators signal and maintain centrosome amplification in breast cancer cells.
Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between...
متن کاملAbsence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification
Women heterozygous for mutations in the breast-cancer susceptibility genes BRCA1 and BRCA2 have a highly elevated risk of developing breast cancer [1]. BRCA1 and BRCA2 encode large proteins with no sequence similarity to one another. Although involvement in DNA repair and transcription has been suggested, it is still not understood how loss of function of these genes leads to breast cancer [2]....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 70 12 شماره
صفحات -
تاریخ انتشار 2010